Dependable autonomous systems =
Knowing well what to do + Knowing how to do it well

Dr. Nicolas Rouquette Dr. Nenad Medvidovic Dr. David Garlan
Jet Propulsion Laboratory Computer Science Department School of Computer Science
4800 Oak Grove Dr, M/S 301-270 University of Southern California Carnegie Mellon University
Pasadena, CA 91109 Los Angeles, CA 90089-0781 Pittsburgh, PA 15213-3891
nicolas.rouguette@jpl.nasa.gov neno@usc.edu garlan@cs.cmu.edu

This position paper reflects upon experiences and lessons learned from several
spacecraft projects at JPL and JPL’s recent collaboration with software architecture
researchers from USC and CMU. In the last 15 years, dependability at JPL has evolved in
stages. Cassini is the textbook example of a process-heavy project that produced a class-A
spacecraft (“a Rolls-Royce for space”). The “faster/better/cheaper” mandates of Mars
Pathfinder and Deep Space One (DS1) gave rise to software pragmatism (“fly what you
test & test what you fly”). The fault-protection work on DS1 pushed the software process
to an extreme adoption of “test like hell”. For a fixed budget, the idea was to drive
software development costs towards zero using model-based code generation technology
and spend all remaining resources on the best and brightest system engineers to analyze,
debate, test and operate the best spacecraft fault protection we could afford using
statechart models. The DS1 Remote Agent pushed the technology envelope of
autonomous systems capable of deliberating, planning, scheduling and troubleshooting
the spacecraft’s mission and activities. These projects solved their own dependability
computing challenges with various combinations of engineering, ingenuity, management,
tools, and test.

Today, the MDS project at JPL represents the fulcrum of a drive towards the routine
development of dependable space missions. Several ingredients helped shape MDS into
what we believe is our best shot at a product-line approach to JPL’s future space
missions.

First, we traditionally limited ourselves to view software in terms of abstraction levels.
When our abstractions were inadequate, we reverted to the next lower level such as
programming language statements. Analyzing the dependability of software systems at
that level is inadequate for thinking about complex spacecraft systems. Researchers in
verification/validation (V&V) have known this for years but the adoption of their
practices has been slow to catch on. To resolve this abstraction mismatch, we need
abstractions from multiple architectural styles that yield a rich architectural landscape on
which we can try to operate while, at the same time, ensuring a high degree of
dependability. The MDS project represents a marriage of heterogeneous architectural
styles; a research problem jointly researched with David Garlan. In particular, MDS
combines a domain-specific soffware architecture (DSSA) centered on the concept of
state with a component/connector view of software architecture.

We already know a very useful and effective domain abstraction for talking about
space systems and missions: state. In MDS is a novel architectural approach to state
analysis in that it allows arbitrary notions of state to be reified as entities that the
architecture can use and operate on. This is a fundamental property to design autonomous
systems that reason, deliberate, and control their own state to achieve goals expressed as



constraints on state properties. However, the DS1 Remote Agent experiment showed us a
single state-centered architectural style is not enough. Although it had extensive
reasoning capabilities, the experiment had to be aborted when two of the Remote Agent
subsystems ran into a resource deadlock. This is a classic example of architecture
mismatch that V&V researchers managed to demonstrate. However, the Remote Agent
had no cognizance of its own execution architecture to detect it. MDS has an explicit
component/connector software architecture, the second dimension of abstraction we
need.

In MDS, we seek to extend the “test what you fly/fly what you test” sense of
pragmatism to our bi-dimensional engineering approach. For example, we are researching
not only ways to prototype components and connectors using a statechart formalism but
also research extensions of architecture description languages that incorporate features of
state-based analysis, for example to describe connector-mediated interaction protocols.

Traditionally, notions of conceptual software architecture with components, connectors
and interfaces have been limited to analysis, not explicit implementation with poor first-
class software representation. For example, traditional notions of software initialization
levels are not used to determine how far back to restart in the presence of faults: common
wisdom has it that optimizations and cached references create interdependencies too
difficult to undo and re-establish with great confidence. We believe a conceptual
architecture with first-class components, connectors and interfaces is required to bring in
additional tools for designing fault isolation and recovery techniques that complement an
autonomous systems’ model-based reasoning capabilities for analyzing faults in the state-
based domain. There are several challenges to this approach.

The first challenge attacks the principle that all interactions among components occur
via connectors. How far deep do we reify all communication with connectors? We run
into limitations due to our ability to define these software architecture abstractions in
terms of traditional software language constructs, mechanisms and patterns. Performance
considerations play an important role for optimizing dynamic interactions that are too
infrequent or too small to incur the burden of connection establishment. These limitations
jeopardize the integrity of the architecture and introduce the risk of adverse interactions
like those the remote agent encountered.

How do we prove to a decision-making manager that a complex product family like
MDS will yield dependable systems? We intend to leverage the DSSA’s goal-based
architecture and comprehensive reification of components, connectors and interfaces to
confer the system self-awareness of its capabilities, performance and actual competency.
Cognizant failure, a common trait of autonomous systems, is a key enabler to raise the
system’s self-awareness about its problem-solving performance traceable to the specific
contributions and roles the involved elements of the architecture played. This represents
an important shift of focus for the artificial intelligence reasoning techniques where the
software architecture becomes part of the model reasoned about. In summary,
dependability and autonomous systems go hand in hand: They must have full cognizance
of their dependability in terms of their domain of expertise and of their internal software
architecture. Besides enabling dependable computing, component software architectures
and related integration standards will enable better engineering processes for building
complex avionics software as dependable assemblies of vendor-supplied components.



Acknowledgements

The portion of research by Nicolas Rouquette described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.

The portion of research by Neno Medvidovic described in this paper was carried out at
the University of Southern California, under a contract with the National Science
Foundation and a contract with the National Aeronautics and Space Administration
through the Jet Propulsion Laboratory, California Institute of Technology.

The portion of research by David Garlan described in this paper was carried out at
Carnegie Mellon University, under a contract with the Defense Advanced Research
Projects Agency.

Biographies

Nicolas Rouquette is a Senior Computer Scientist at the Jet Propulsion Laboratory. He
has experience in designing and mentoring spacecraft fault protection systems using
COTS model-based code generation technologies. His current work and research interests
focus on organizing heterogeneous software architecture styles, frameworks and patterns
around the central notions of first class components, connectors and interfaces.

Nenad Medvidovic is an Assistant Professor in the Computer Science Department at
the University of Southern California and is a faculty member of the USC Center for
Software Engineering (CSE). His research interests focus on software architecture as a
key to developing mechanisms for engineering reliable, flexible, large-scale software. His
research project, SAAGE (Software Architecture, Analysis, Generation, and Evolution),
expands the traditional notions of evolution, such as modularity and typing, for use in
architectures, and introduces explicit, flexible connectors.

David Garlan is an Associate Professor of Computer Science at Carnegie Mellon
University. His research interests include software engineering, with a focus on software
architecture, pervasive computing, formal specifications, software development
environments. He co-authored with Mary Shaw one of the first modern textbooks on
software architecture.



